python设置散点图点的大小_python_matplotlib分别使用plot()和scatter()画散点图,以及如何改变点的大小...
1. 使用plot()画散点图html根据关于matplotlip.pyplot的官方文档:pyplot,其plot部分的解释plot()的做用是画出线条和线条上的标记:python 根据pyplot的官方教学文档:Pyplot tutorial,若是不改变其默认设置,画出的是蓝色的线条,即"b-":api 代码示例:数组import numpy as npimport matplotlib.py
1. 使用plot()画散点图html
根据关于matplotlip.pyplot的官方文档:pyplot,其plot部分的解释plot()的做用是画出线条和线条上的标记:python
根据pyplot的官方教学文档:Pyplot tutorial,若是不改变其默认设置,画出的是蓝色的线条,即"b-":api
代码示例:数组
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0,10,1)
plt.plot(x,x+0)
plt.show()
画出的效果为一条蓝色的直线:dom
plt.plot(x,x+0)
等价于 3d
plt.plot(x,x+0,'-')
而能够看到,[x, x+0]表示的是一个二维数组,每一维是从0到9这10个整数,或者说10个点。plot()的做用就是用某种方式将这10个点创建链接,不过其默认方式使用线条链接。现考虑若是是用点或圈而不是线条的方式将这10个点链接起来,画出的就是散点图。code
从pyplot能够查到,控制线条的种类的字符串能够为'--', '-.', ':', '.'等等:orm
故如今考虑用'.'或'o'代替'-'链接这些点。htm
将'o'代替'-'的示例:blog
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0,10,1)
plt.plot(x,x+0,'o')
plt.show()
画出的效果是10个散点图:
用于画出随机点的示例:
import matplotlib.pyplot as plt
import numpy as np
def rand_data():
return np.random.uniform(low=0., high=1., size=(100,))
# Generate data.
x1, y1 = [rand_data() for i in range(2)]
plt.plot(x1,y1, 'o',color='b')
plt.show()
100个随机点的散点图效果:
2. 使用scatter()画散点图
根据官方文档:matplotlib.pyplot.scatter的定义,scatter()是用来画散点图的:
和plot()相同,scatter()的做用也是将画出的点链接起来,不过其默认链接方式是'o',即点的方式:
示例:
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0,10,1)
plt.scatter(x,x+0)
plt.show()
plt.scatter(x,x+0)
效果和
plt.plot(x,x+0,'o')
的效果相同:
3. plot()和scatter()改变点的大小
plot()中改变点的大小的参数是markersize 或 ms:
而scatter()中改变点的大小的参数是s:
示例:
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0,10,1)
plt.plot(x,x+0,'o',markersize=4.,color=(0.8,0.,0.))
plt.scatter(x,x+1,s=16.,color=(0.,0.5,0.))
plt.show()
效果:
能够看到,plot()的markersize设为4.0,和scatter()的s设为16.0,画出的点大小相同。
这里matplotlib.pyplot.scatter有解释, scatter()中参数s表示的大小,和plot()的markersize大小的平方相同,即[s]=markersize**2,下图参考:pyplot scatter plot marker size
4. 加入图例(legend)后图例中点的大小和数量
参数markerscale是用于调整legend中点和实际图中画出的点的大小关系,若设markersize=1.0,则legend中的点的大小和图中画出的点大小相同;若设markersize=2.0,则legend中的点的大小是图中画出点的大小的2倍。
而numpoints参数做用于调整用线条画出的点,即用plot()画出的点,legend中的点的数目,而scatterpoints参数做用于调整用散点图画出的点,即scatter()画出的点,legend中的点的数目:
markerscale,numpoints和scatterpoints3个参数默认值都为1。
下面加入图例,更改plot()画出的点在legend中点的数量为2,且legend中点的大小为原图的2倍:
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0,10,1)
#print(x)
plt.plot(x,x+0,'o',label='x+0',markersize=4.,color=(0.8,0.,0.))
plt.scatter(x,x+1,label='x+1',marker='o',s=16.0,color=(0.,0.5,0.))
plt.legend(loc="best",markerscale=2.,numpoints=2,scatterpoints=1,fontsize=12)
plt.show()
效果为:
更改scatterpoints大小也为2, 即scatter()画出的点在legend中显示数量为2:
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0,10,1)
#print(x)
plt.plot(x,x+0,'o',label='x+0',markersize=4.,color=(0.8,0.,0.))
plt.scatter(x,x+1,label='x+1',marker='o',s=16.0,color=(0.,0.5,0.))
plt.legend(loc="best",markerscale=2.,numpoints=2,scatterpoints=2,fontsize=12)
plt.show()
效果为:
其它参数未变。
更多推荐
所有评论(0)